
 1 of 13

An introduction to the Development, Architecture and Capability of Reflex
components.

Abstract – This note introduces ‘Reflex’ - a new, flexible,

relay test architecture which builds from simple low-cost
relay test card modules upwards into a range of flexible
parametric or life-test systems. The architecture is designed
to accommodate a wide variety of end-user requirements from
simple production test of a single parameter through to
multi-contact life testing at very high speeds and to be
quickly configured both at manufacture and by the end-user.
This note describes the design evolution of the Reflex system
and how some key engineering features bring superb timing
accuracy and flexibility to the design.

I. UNIFIED REFLEX ARCHITECTURE

A. Introduction.

For some years, Applied Relay Testing Ltd has made
available a range of relay test products that offer extensive
test capability and which are designed as integrated test
instruments for the rigors of both production and laboratory
use. Our original RT90 parametric test system and its
successor the RT290 have enabled relay manufacturers and
users to perform high quality tests at high speed coupled with
traceability and extensive investigative capability [2]. To
complement these dedicated test systems with their integrated
‘high-end’ features we are now introducing a range of lower
cost relay test systems and components that combine
flexibility with economy. Using these modular items it is
possible to address the more cost-sensitive applications such
as multi-station manual production test and simple automatic
functional testing and sorting as well as more complex and
variegated systems such as those for life-testing. These
“Flexible Relay” or “Reflex” components and systems are the
result of combining and packaging key test modules to suit
the application as exactly as possible and to therefore obtain
the best price to performance ratio, as well as to react to the
expected increase in system configuration possibilities as the
newer micro-geometry devices make multi-device, multi-
contact parts possible [3][5].

B. Basic architecture.

The concept behind the Reflex architecture is to provide
modular relay test systems that are built upwards from cost-
effective relay-specific test functions and founded on the well-
establis hed PC plug-in card platform. Due to its aged design
the PC can seem to have limitations as a hardware platform,
but in recent years there have been many improvements in its
application to rugged production situations with the
emergence of true ‘industrial’ rack mountable PC chassis
components complete with air filtering, redundant power

supplies, stable and proven operating systems (e.g. Windows
NT) all at increasingly cost-effective prices. These
components are hard to ignore if one is striving for the lowest
cost implementation of a test system and we decided that
instead of creating a number of customised individual relay
test systems that would each approximate (hopefully!) to
common end-user requirements, we would create some generic
low-end modular components that could be configured
quickly into complete test systems such to provide quite exact
end-user solutions at a cost-effective price. The basic building
blocks could therefore be simple PC plug-in cards designed in
such a way that any electrical and mechanical limitations of
the PC platform did not intrude on relay test performance. The
technical challenge would be to create not only a good
mechanical and electrical test environment, but control, test
and reporting software that would be able to accommodate all
possible hardware flexibility, ideally configuring itself based
on the hardware available. Such software should hide much of
the hardware from the end-user and present itself in a simple
and clear manner. Figure 1, showing a production graphical
overview screen created using the Reflex software, illustrates
that we have achieved this goal.

Figure 1 An example of relay batch graphics, created with the Reflex

test software.

Within this chosen PC card format, we decided to partition

test system resources into three basic categories:

• Contact resources (e.g. CR measurement, contact timing

and loads)
• Device resources (e.g. monostable / bistable coil drive

and measurement)
• System resources (e.g. test start, busy, handler control

signal and global system synchronisation and timing).

The physical representation of this layout is as shown in
Figure 2.

 2 of 13

Monostable /
bistable coil
connections

Contact card 2

Contact card 1

Coil card

Coil driver module

Relay device

DFLAG

CFLAG

CFLAG

System card DFLAG

‘Device’ flag bus (DFLAG)

‘Contacts’ flag bus
(CFLAG)

System signals:
- start test
- test busy etc

CFLAG

T0

T0

T0

T0

Sync line (T0)

Figure 2 - Unified REFLEX architecture

Since resources for measuring the basic loaded relay contact

and for driving the device coil are always required whether for
production parametric tests or for contact life-testing, it turns
out that by partitioning these functions to imitate the separate
functionality within a relay device, systems can be built from
Reflex cards that directly correspond to the device (or devices)
that will be tested – almost irrespective of the actual device
configuration. Furthermore, such systems can be configured
into either simple parametric test systems or more complex life-
test equipment simply by the number and interconnection of
these basic PC card resources. The challenge is to manage the
testing across all cards in such a way that system build can be
as flexible as possible to target this end-user requirement, a
challenge that has been met with novel hardware linked by
special synchronising signals and by new more ‘intelligent’
software.

C. Basic considerations regarding the PC as a
platform.

Before committing ourselves to the PC as a platform for this
Reflex architecture, we gave careful consideration to the
tradeoffs between its obvious low-cost and popularity and the
technical limitations that may affect our use of it in a relay test
scenario. In an ideal world, one designs a test system starting
with a suitable electrical back-plane that accommodates not
only the processor signals to interface with each hardware
module, but also any special custom test signals that are
always required by the test system itself, and in this respect
the PC platform appears very inflexible. In addition, we felt that
as a general purpose platform for test equipment it was less
than ideal unless we could come up with positive solutions to
the following questions that we posed to ourselves:

How would we built a system physically to suit harsh
environments?
This covers topics such as housing, cooling, ease of

maintenance and upgrading, all of which have serious cost
implications for commercial applications. On examination of
the industrial implementations of the PC platform housed
within a 19-inch racking chassis, these points are well
thought out and are very different to the casual, almost
disposable approach taken with the more popular desktop
PC. As examples, some ‘off-the-peg’ industrial housings are
shown in Figure 3.

Figure 3 The flexibility of the industrial PC platform

What steps would we take to facilitate the quickest build or
upgrading of new or existing systems?
 The Reflex architecture is based on being able to quickly

configure a system to an end-user’s requirements by simply
inserting resource cards into a card frame, thus it is important
to make this procedure as simple as possible, especially if
this same procedure is expected from the customer during an
upgrade at some stage. Traditional tasks when installing
cards into a system require the setting of various
‘personality’ or address switches to inform the system of the
card location and function and this is an area where mistakes
are easily made and where the small switches used to
implement these settings can themselves introduce
unreliability over the long term. Present day PC’s implement

 3 of 13

a generic ‘plug-and-play’ definition for I/O cards that already
alleviate these set-up problems and we decided to enhance
this further to create our own fully-automatic installation
procedure that provides us, and the end-user, with the
following benefits:

• Our cards have no switch settings, they are simply

inserted into the back plane.
• The actual card address, its exact function and

capability are scanned by the software at start-up,
leading to a fully dynamic and re-configurable
system that is easy to upgrade.

• The path to future cards with additional
functionality is clearly paved.

How would we construct systems that require a large
number of cards?
This is an important requirement for systems that will test

multi-pole devices or for larger life-test systems. Desktop
PC’s are very poor in this respect, offering only a few I/O
slots as well as being very restricted and unpredictable
mechanically. By contrast, a single industrial PC chassis
can offer up to 20 slots in a defined and planned mechanical
layout, quite adequate for most small or medium relay test
systems. Smaller units are also available with reduced
numbers of slots. For the largest systems we have extended
this concept further with a scheme whereby we can link
multiple industrial PC chasses into a ‘virtual’ PC containing
many more I/O slots, for example to cover (say) a 200-
contact life-test system. This scheme has required us to
create a means of performing the ‘invisible’ linking of the
chasses as well as the implementation of a novel shared-
address scheme that allows us to add an almost unlimited
number of cards to a system without having to consider
address range issues.

How would we pack our contact and device resources into
the limited PC card PCB area?
Due to the fact that the PC was originally designed with the

objective of housing only simple I/O cards, the actual
available PCB area on each card is rather limited compared
with the higher cost alternatives such as VME or VXI. This
space limitation poses a challenge that can only really be met
by using surface mount components where possible and by
using a high level of integration such as the newer >10,000
gate in-circuit programmable FPGA devices. Programmed
using a high-level logic language VHDL, these logic parts
have been found ideal to host the sophisticated contact
timing measurement and other logic required to test relay
devices.

Finally, having attended to each of these points it was clear

that we were actually able to harness the low-cost of the PC
platform at the expense only of implementing some inter-card
connection scheme to route signals required by our relay test
requirements.

II. CARD RESOURCES.

A test system constructed with Reflex cards is typically
partitioned into three areas, each implemented by one or more
cards:

• System control (typically one card)
• Device control (this card controls device coils, and

there are as many cards as are required by the
application – i.e. one card per device)

• Contact interface (this card interfaces with device
contacts, and again there are as many cards as are
required by the application – one card per contact
for example).

This section will look at typical implementations of these

card functions in more detail.

A. System card.

Figure 4 shows the system control card. Typically this card
fulfils the task of interfacing the system to the controls in the
outside world, allowing device tests to be synchronised with
mechanical handling activity and to report the status of test
results for sorting.

DFLAG from device cards

PC bus
interface,
status &
control
registers,
EEPROM

Handler start and binning
control

Local test status indicators
and test start controls

Figure 4 System card

Although such simple functions could easily be ‘lost’ within
one of the other cards, the existence of a separate system
control card is important to the Reflex architecture and results
in extremely flexible systems as we shall see in later sections.

B. Contact card.

This section looks in more detail at the contact card and its
resources. The block diagram of a fully populated contact card
is shown in Figure 5.

 4 of 13

2. Wide range voltage
drop measure

3. Mux

1. Contact loads

5. Contact
timing
measure

4. Contact
logic state
detect

6. PC bus
interface,
status &
control
registers,
EEPROM

Figure 5 Contact card resources - block diagram

This circuitry incorporates established and proven

technology already in use by us and with the major
components being:

1. Contact loads. On-card resistive loads of 10,60,100,300

and 1k are provided, which together with a load voltage
generator of +/-20mV to +/-10V, allow a wide range of low
and medium level contact environments. The loads can be
disabled for dry circuit switching or to use the system in
CVD (contact voltage drop) mode, and a special option
takes the on-card load capability further up to +28V,
100mA.

2. Versatile contact voltage drop measurement. DC or A/C
voltages can be measured at the contact sense terminals
in the presence of open-circuit load voltages up to +/-
400vpk.

3. A flexible multiplexer. This routes the load and voltage
measurements to the contact connections to permit
measurement of contact resistance (CR), contact voltage
drop (CVD) Kelvin fixture check, self-test and calibration.

4. A contact open / closed state comparator. This operates
at a programmable voltage that can be a simple fixed
value, or a percentage of the load voltage (e.g. 90%).

5. Timing logic. This logic provides results for operate and
release time, bounce time and number of bounces. The
bounce criteria is also programmable to exclude events
shorter than specific limits.

Timing logic – block diagram.

Figure 6 shows the block diagram of the logic used to

monitor contact operate / release and bounce times. This logic
is simple in concept but complex in its number of registers and
their interconnection, prompting us to implement it within one
of the newer >10k gate FPGA devices, allowing us to
incorporate it together with other card logic and to obtain
other benefits such as flash-programming and ease of
changes.

System clock 10MHz

Clock prescaler TPR

Edge debounce TDB

Contact
open /
closed

Latch first edge TFE

Count edges TNE

Timing
clock

Debounced
contact state

Latch last edge TLE

Master timing count
TBC

Timing start delay
TMD

PC bus

Timing duration TDU

Logic

‘Done’

T0

Figure 6 Block diagram, timing measurement

Timing measurement operates as follows.

1. The system clock (10MHz) runs all the time and is divided
by the prescaler TPR to produce the actual timing sample
clock, for example 1us (divide by 10).

2. The timing clock feeds the master counter TBC which
starts counting upward from zero at T0 and counts
upward.

3. When the master count reaches the value in the start
delay register TMD, contact monitoring commences and
the registers TFE, TNE and TLE latch values for the time
of the first edge, the number of edges and the time of the
last edge respectively.

4. Finally, the master count reaches the value in the timing
duration register TDU – this defines the total time
allocated to the timing measurement and the ‘timing done’
flag is asserted.

5. Following a timing measurement, software fetches these
register values and processes them to produce operate
and release time, bounce times and number of bounces.

A/D measurement logic – block diagram.

Figure 7 shows how an A/D is provided ‘behind’ each

contact. This may seem an extravagance, but the performance
and flexibility that results is well worth the additional expense.
In fact simply providing the A/D itself is not the real problem,
the real challenge being to obtain a wide range of A/D
measurement modes and qualities depending on the system
application. Our high-integration FPGA allows us to solve this
problem again by providing control logic that handles the A/D

 5 of 13

without any software intervention at all, permitting truly
parallel test systems to maintain their timing independent of
the number of contacts being measured. The logic allows us to
make a general-purpose voltage measurement over any
integration period, with flexible sample counts and to
automatically perform phase-sensitive rectification on known
AC signals whilst largely eliminating unwanted induced noise
and AC pickup [4]. As a result, this voltage measurement is
used for measuring contact voltage drop, contact resistance
as well as for the Kelvin connection checks, self-test and
calibration.

System clock 10MHz

Sample interval
prescaler APR

Control
logic

A/D end-of-
convert

Sample
clock

A/D result accumulator ADR

Sample counter ASC

Measure start delay
AMD

PC bus

‘Done’

T0

A/D trigger

A/D result
Clear

Phase

Figure 7 Block diagram, A/D intergation

A/D integration operates as follows.

1. The system clock (10MHz) runs all the time and is divided
by the prescaler APR to produce the actual A/D sample
timing interval, for example 30us.

2. The sample clock feeds the sample counter ASC which
holds the required number of samples and it also feeds
the start delay counter AMD which delays the start of the
AMD counter to offset the A/D measurement if required.

3. At the start of the integration, the result accumulator
ADR is cleared to zero.

4. During the integration, each sample causes the A/D to be
triggered and its result added to the accumulator. This
register is 32 bits, allowing for 65536 (16-bit) sample count
with a 16-bit A/D result. Note the ‘phase’ signal which
allows this logic to accommodate AC measurement by
instructing the logic to either add or subtract from the
accumulator.

5. Finally, after the integration, the processor reads this
value and performs the necessary sample count division
to normalise it back to a useful value.

This logic is very flexible because it can be programmed to

cover a wide range of integration times and measurement
qualities. This is particularly useful in a life test situation
where short measurement times are desirable, but where some
investigation is still needed for the end-user to establish the
best integration time versus measurement performance trade-
off.

C. Device card.

This section looks in more detail at the device card and its
resources. A typical device card is mainly responsible for
controlling device coils with a block diagram typically as show
in Figure 8.

5. A/D measure

4. Mux

1. Coil power and
active drive circuitry
and D/A’s

3. Fast coil
switch

6. PC bus
interface,
status &
control
registers,
EEPROM

5. Device
coil(s)

2. Logic

T0 CFLAG DFLAG

Figure 8 - Device card resource block diagram

Basic device card capability.

The major components of the device card capability are:

1. Coil power supply. This is an interface to a local power
module that provides a programmable voltage and current
bipolar supply. In addition to this coil supply there is
optional active drive circuitry to accommodate transistor
and FET-based relays where required.

2. Control logic manages the coil on/off switching and
response to the bus signals T0, CFLAG and generates a
‘device done’ flag DLFAG. In addition, this logic contains
the ability to ‘step’ a nominated D/A, auto-incrementing
or auto-decrementing it to make processor independent
measurements of the device operate or release
characteristics.

3. A fast coil switch is provided between the coil power and
the device to enable accurate timing tests.

 6 of 13

4. A coil terminal multiplexer allows various modes of coil
power connection to the device, including fixture tests
and combining or isolating coils for bistable testing.

5. Coil drivers suitable for monostable or bistable single or
dual coil drive, with or without active device drive.

6. The PC bus interface to access various card registers and
to configure the card prior to, and after, a hardware test
phase.

Stepping logic – block diagram.

For true parallel device testing, the device card is capable of

auto-incrementing or auto-decrementing coil or active drive
D/A values without processor intervention – this permits
hardware determination of operate and release voltages or
currents. Figure 9 shows the block diagram of the logic used.

System clock 10MHz

Step interval
prescaler SPR

Control
logic

Step
clock

Step accumulator STA

Step counter STC

Step start delay SED

PC bus

CFLAG

T0

D/A latch
and ‘which’
D/A

D/A value

Step delta STD

‘Done’

Figure 9 Block diagram, step logic

The step logic operates as follows.

1. The system clock (10MHz) runs all the time and is divided
by the prescaler SPR to produce the step timing clock, for
example 1us (divide by 10).

2. The step clock feeds the step counter STC, which starts
counting downward from an allowed step count after the
step delay SED elapses. Step activity is completed when
this counter reaches zero or on CFLAG, depending on the
mode of operation.

3. On every step, the value in the step delta register STD is
either added or subtracted from the step accumulator
STA.

4. When the value in the accumulator STA changes, the
control logic issues a load pulse to the appropriate D/A,
transferring the STA value to it.

5. Finally, the step activity is complete and the ‘done’ flag is
set. The processor can read the step count to determine
the exact point at which device activity occurred.

III. CARDS BECOME SYSTEMS – THE INTER-CARD
CONTROL SIGNALS.

When a relay test system is configured using these Reflex
cards, its effectiveness is due in no small part to the design of
some key global control signals that inter-link the cards. These
signals actually have nothing to do with the PC architecture
and have to implemented as custom wiring, yet they enable
the cards to co-exist and to form a true relay test system. It
would actually be possible to implement a relay test system
without these signals and with the card resources controlled
totally by software alone but the measurement timing of such
a system would be very uncontrolled and there would be a
significant degradation of performance as the number of cards
increased, exactly the opposite of that which we wish to
achieve with a fast multi-contact life-test system. These inter-
card signals synchronise and flag key device activity and
release the controlling software from having to meet
unrealistic timing obligations.

 There are three main control signals, typically bussed across

all cards and with functions as follows.

System timing (T0).
This signal is asserted at the start of a hardware test
(possibly to initiate a measurement of CR or timing) and its
assertion marks the start of all synchronised activity across
all of the required resources, for example if the test system
is testing a 4-pole changeover device for contact
resistance, all 4 closed contacts are measured at exactly the
same time with no software delay or uncertainty. This
master signal is issued by the system card and is received
by all other cards.

‘Contacts’ flag bus (CFLAG).
This signal is asserted when all local tasks relating to
contact resources are complete, or when a required contact
target state is reached. This signal is issued by contact
cards and is received by a device card. As such, events
such as the completion of a parallel CR measurement can be
monitored on a device basis. A feature of the exact
electrical definition of this signal is that it can be
programmed to indicate either a group event (the usual case
where for example all CR measurements have finished) or
individual contact events (for example to measure the
operate voltage of each contact during an operate coil
voltage ramp). More about this ‘group’ and ‘individual’
capability later.

‘Device’ flag bus (DFLAG).
This signal is asserted when all tasks relating to the device
are complete. This signal is received by the system card
and is normally an output from all device cards. As with the

 7 of 13

CFLAG line, it can be programmed to be asserted on ‘all’
devices, or on ‘any’ device depending on the nature of the
test.

A. An example of how these key signals measure
operate voltage.

The action of these key relay test signals can be seen in the

timing diagram of Figure 10 which shows how the system
measures the operate voltage of a relay without software
intervention during the applied test ramp and despite the fact
that device contacts may be arbitrarily distributed across
separate contact cards. Without these control signals this
measurement would only be practical using significant
software querying intervention and with the attendant timing
uncertainty.

T0

VOperate

VStart

CFLAG

DFLAG

1

2
3

Figure 10 - Operate Voltage measurement

The measurement is a simple 3 step process.

• At ‘1’, the synchronising signal T0 is asserted to
indicate the start of the test. This causes the device
card coil resources to commence ramping the coil
voltage from VSTART upwards and using the
‘stepping’ logic discussed earlier.

• At ‘2’, the device is completely operated causing the

CFLAG line to become asserted, and causing the coil
voltage ramp to stop at the device operate voltage.
Note that in this mode, the CFLAG line will only
become asserted when ALL contacts have reached
their target state, i.e. when the device is operated.
(As will be seen later, another mode is possible where
CFLAG is asserted and stops the ramp on each
contact state change, should individual contact
operate voltages be required).

• At ‘3’, the device flag line DFLAG becomes asserted
to indicate that the device activity is finished and this
signals the system card to note the end of the test
and to return T0 to its inactive state. The software
can now interrogate the device card to read the actual
final coil voltage and to reset the various hardware
ready for another test.

B. Electrical wiring of the key signals solves the
monitoring of contact events

Most of the power of these timing signals is in their

flexibility, being able to indicate single or group events (for
example either a single contact change or a complete device
operate condition). This is achieved by linking the actual
signal meaning to its polarity.

Contact 1

Input to device
card

Contact 2

+5V

0V

CFLAG line

Mode CFLAG asserted
when

Contact activity to
assert CFLAG

Typical
application

Group (all
contacts)

High (+5v) All contacts must
open their ‘switch’ to
release CFLAG to go
high.

Monitoring for
device operated /
released.

Single (any
contact)

Low (ground) Any contact may
close its switch to pull
CFLAG line low.

Monitoring for
change / fail in any
contact.

Figure 11 Combining contact information with CFLAG

Figure 11 shows the wiring of the CFLAG and DFLAG lines –

a scheme termed a ‘wire-or’, so called because the signal
calling in at various cards (contact #1, contact #2 etc) actually
creates a logical OR function where the line ‘wants’ to float
high to +5v by the action of the resistor, but can be pulled low
by one or more contact cards simply by each one closing its
CFLAG output ‘switch’ (shown as ‘Contact 1’, ‘Contact 2’
etc). Thus contact #1 OR contact #2 OR contact #n can
control the line – a situation analogous to an emergency brake
cord requesting a stop action. By simply defining the meaning
attached to a contact switch closure we can use the line to
indicate device contact activity across many contacts, and the
table shows how the line can be used to indicate the state of a
group of contacts, or simply that of a single contact.

 8 of 13

IV. HOW THE REFLEX ARCHITECTURE BUILDS VARIOUS
SYSTEMS.

These control signals are actually very powerful and be used
to link contact and device cards in either a ‘flat’ or
‘hierarchical’ manner to construct test systems with various
parallel test characteristics. This section looks at how to
configure a number of different relay test systems from Reflex
resources and depending on the end application of the
system.

A. A simple parametric test system.

DFLAG
System
 card

System signals:
- start test
- test busy etc

T0

DFLAG
T0

CFLAG

CFLAG
T0

CFLAG
T0

Device
card

Contact
card 1

Contact
card 2

CFLAG
T0Contact

card n

Device
 coil

Device
contacts

Figure 12 - Signal wiring - basic system.

Figure 12 shows a basic system for testing one relay device.
A system card manages system timing and external control
signals, while a device card controls the device coil and two
contact cards interface with the contacts. These cards are
linked with the T0, DFLAG and CFLAG signals as shown,
allowing additional contact cards if required. A system
configured in this way would be similar to the RT290
parametric test system in its ‘single device’ functionality.

B. Testing two devices synchronously.

In many production situation more than one device is tested at
a time, for example as part of an automatic handling system
where the indexing time is comparable to the device test time
and where this is then the only way to achieve increased
throughput. The Reflex architecture has been designed to
accommodate this by simply configuring the required cards as
shown in Figure 13.

DFLAG
System
 card

System signals:
- start test
- test busy etc

T0

DFLAG
T0

CFLAG

CFLAG
T0

CFLAG
T0

Device
card

Contact
card 1

Contact
card 2

CFLAG
T0Contact

card n

Coil
DFLAG
T0

CFLAG

CFLAG
T0

CFLAG
T0

Device
card

Contact
card 1

Contact
card 2

CFLAG
T0Contact

card n

Contacts

Coil

Contacts

Device #1 Device #2

Figure 13 Signal wiring - dual system.

This shows two devices – device #1 and device #2, each with
their own resources much as for the simple single system in
Figure 12 but with a common system card. The difference is
that:

• The T0 system timing line is taken to all cards so that

all cards act simultaneously. Note that this imposes
the restriction that the test for each device must start
synchronously (although the two devices could be
different and be tested to different test programs).

• The DFLAG (device ready) line is joined between the

two device cards, allowing the system card to
respond to devices as a group, or singly depending
on the software programming of its assertion state.

Conceptually, this paralleling of devices can be extended
indefinitely to test many devices in parallel – note though, that
the controlling software must be able to understand the wiring
configuration and manage the resources for configuring a test
program and collecting result data. As we will see shortly, this
is not too difficult given today’s processing power, object
programming and multi-threading.

C. A life test configuration.

To create a life-test system, the architecture of the dual system
can be extended to provide as many ‘coils’ and ‘contacts’ as
required, and the T0, CFLAG and DFLAG signals connected
as shown in Figure 14.

 9 of 13

DFLAG
System
 card

System signals:
- start test
- test busy etc

T0

DFLAG
T0

CFLAG

CFLAG
T0

CFLAG
T0

Device
Card 1

Contact
card 3

Contact
card 4

Device #1

DFLAG
T0

CFLAG

Device
Card 2

Device #2

CFLAG
T0

CFLAG
T0

Contact
card 1

Contact
card 2

Contact #1

Contact #2

Contact #3

Contact #4

Figure 14 Life test system architecture

This shows a ‘2 device’, ‘4 contact’ life test system,
synchronously testing from the common timing signal T0 and
with a common contact flag CFLAG and a common device flag
DFLAG. The fact that these signals are common across all
devices and contacts breaks the architecture somewhat but
only restricts the system to testing all devices at the same time
and whilst it would be possible to run different devices on this
system, the system would cycle at the speed of the slowest
device. (By adopting the architecture of the dual system where
system control and CFLAG routing accurately reflected the
device construction, it would be possible to run life tests on
independent devices at different rates, although this would
bring increased software reporting complexity).

Clearly this represents a larger system that can be built with
Reflex components and requires not only a larger number of
cards, but power supplies and other ancillaries as well as the
industrial PC rack. To illustrate this, a typical physical
implementation of the Reflex 50 life-test system is shown in
Figure 15.

19” Equipment
rack

Load rack with
card-based R,
L and lamp
loads

Forced air load
cooling

Measurement
rack and
controller

Devices in
customer oven

Device
interface

Coil power
supply

Figure 15 Rack mounted items – Reflex 50 Life Test System.

D. Testing two devices asynchronously.

As an extension of the synchronous dual system, very
occasionally it is required to test multiple devices but with
each device handled completely independently, for example
where each device might be located within a separate
mechanical handling system and cannot be guaranteed to be
ready for testing at exactly the same time.

The Reflex architecture can handle this by simply adding more
system cards to create multiples of a basic single system and
as shown in Figure 16.

 10 of 13

DFLAG
System
 card

System signals:
- start test
- test busy etc

T0

DFLAG
T0

CFLAG

CFLAG
T0

CFLAG
T0

Device
card

Contact
card 1

Contact
card 2

CFLAG
T0Contact

card n

Coil
DFLAG
T0

CFLAG

CFLAG
T0

CFLAG
T0

Device
card

Contact
card 1

Contact
card 2

CFLAG
T0Contact

card n

Contacts

Coil

Contacts

Device #1 Device #2

DFLAG
System
 card

T0

System signals:
- start test
- test busy etc

Figure 16 Multiple asynchronous system

As can be seen, devices #1 and #2 know nothing about each
other at all, and although the control is by common software
that sets up and collects data from all cards in both systems,
the two systems actually operate independently. Again, it is
instructive to note that the Reflex architecture can easily
accommodate this requirement.

V. HOW THE REFLEX ARCHITECTURE GUARANTEES
MEASUREMENT TIMING

Although not always essential, it is desirable to make device
measurements in a repeatable way between tests, for example a
specified time should elapse between applying operate
voltage to a device coil and the closed contact being
measured for resistance. In a software-driven system this
often results in guaranteeing that at least a minimum time will
elapse for this – enough to ensure that the contact is indeed
closed and has become stable – but this still causes
uncertainty about the actual point of measurement and may
lead to inefficiency where the testing of small, fast devices
becomes limited by software response times such as in reed
relay contact or micro-relay life testing.

The Reflex architecture with its inter-card signals avoids this

pitfall and results in accurate measurement timing across large
numbers of devices, releasing the software to simply gather
result data after a measurement has completed. In this section
we will look at how this timing accuracy is achieved.

A. Timing of events during a CR measurement.

Let’s look more closely at the interaction of these CFLAG,
DFLAG and T0 lines in a typical system, perhaps as shown in
the simple single relay test system of Figure 12, where there is
one device card, two contact cards and a system card.

T0

Coilen

CFLAG

DFLAG

1

2

SED

Loaden 3
LED

Contact

4

5

6

CR measure
7

AMD 8

CR done

9

10

11

13

12

14

Figure 17 Example system signals – CR measurement.

Figure 17 shows how these signals interact to complete a
contact resistance (CR) measurement on all contacts. An
important point to note is that all measurement timing is
controlled by hardware, not by the controlling PC. This is
important for two reasons – firstly because although
processor speed has increased dramatically over the last few
years, so have the number of ‘background’ tasks such as
printing, networking etc, all of which ‘steal’ time away from an
application such as relay testing and – worse – can be very
unpredictable. Secondly, hardware-derived timing does not
degrade as further hardware resources are added, making it
possible to implement potentially large life-test systems
without significant impact on measurement time.

The actions during a CR measurement are as follows.

• At ‘1’, the T0 line is asserted by the system controller

to indicate the start of a test phase (in this case a CR
measurement on all contacts in parallel).

• At ‘2’, the coil drive is enabled after a programmable
delay SED.

• At ‘3’, the contact load is enabled after a
programmable delay LED – this delay and its relation
with the coil delay SED allows a variety of dry and
wet contact switching to be obtained.

• At ‘4’ an example contact changes and starts to
bounce until ‘5’. In this example, the load is already
enabled so the contact switches ‘wet’. Alternatively,
if the load were delayed until ‘6’, the contact would
switch dry.

• At ‘7’, the contact resistance measurement starts
after a programmed delay TMD.

• At ‘8’, the measurement is complete and asserts an
internal CRDONE flag at ‘9’.

 11 of 13

• The CRDONE flag for each contact releases its
CFLAG output and may remove the load (depending
on load mode), but CFLAG will not go high until all
contacts have released it (at ‘10’), allowing the
system to observe CFLAG as relating to all contacts
completing their measurement.

• At ‘11’, CFLAG is seen asserted by the device card,
may clear the coil drive (at ‘13’, and depending on
coil mode) and causing it to release its DFLAG line,
indicating that device activity is complete.

• At ‘12’, the system card has observed that DFLAG is
asserted and ends the test phase by clearing T0.

• At ‘14’, the system responds to the end of the test
phase by the processor interacting with the hardware
to clear down the various hardware flags and then to
read the CR result information from each card.

For completeness, the timing of events during a timing
measurement and during life-testing are reproduced in
Appendix I and II respectively, and it will be seen that there is
a great deal of similarity in these to the CR measurement just
illustrated.

VI. OTHER DEVELOPMENTS OF THIS REFLEX
TECHNOLOGY

We are already building on the foundation of the Reflex
architecture with components that permit tests other than the
traditional contact and coil measurements. For example, we
have now implemented the requirements of CECC and MIL-
spec [1] to create a fully digital 8-channel chatter detector card
for device vibration monitoring, and we plan to extend the
range further.

APPENDIX 1 – TIMING OF EVENTS DURING A CONTACT
TIMING MEASUREMENT.

T0

Coilen

CFLAG

DFLAG

1

2

SED

Loaden 3
LED

Contact

4

5

TMeas

8

Tdone

9

10

11

13

12

14

Measure
Top

Measure Tbnc

TDU

Figure 18 Example timing signals - Timing

The actions in Fig 18 during a timing measurement are as
follows. These signals are identical to the contact resistance
diagram of Figure 17 with the exception of those indicated
below.

• At ‘3’, the load is enabled before any contact activity

is expected, since timing requires that a load be
available to determine the contact open / closed
status.

• Synchronised to T0, timing counters monitor for each
contact ‘first edge’, ‘number of bounces’ and ‘last
edge’, with results available at ‘8’(TDONE) after the
allowed timing duration TDU.

APPENDIX II - TIMING OF EVENTS DURING LIFE-TESTING.

 12 of 13

T0

Coilen

CFLAG

DFLAG

1

2

SED

Loaden 3
LED

Contact

4

5

TMeas
8

Tdone

9

10

11

13

12

14

Measure
Top

Measure Tbnc

TDU

CR

AMD

CRDone

Figure 19 Life-test timing

For a life-test system, the Reflex architecture shows its true
worth. Figure 19 shows the timing signals to make CR and
timing measurements on every contact and on every operate
and release cycle during a life-test. This next description goes
through the signals and how they relate to a life test. Note
that this only shows the ‘operate’ phase of a life-test cycle -
operate and release phases are actually identical in hardware
and only the software data read actions and specific contact
activity changes.

• At ‘1’, the T0 line is asserted to define the test phase
start for the operate series of measurements. All
hardware timers start running.

• At ‘2’, after the programmed delay SED, the device
coil is enabled. (In this life-test mode, software has
configured it to remain active until the next T0 at the
start of the release phase).

• At ‘3’, the load is enabled ready for the contact
switching.

• At ‘4’, an example first contact edge is seen and its
time is recorded in the ‘first edge timer’. This will
produce the timing result ‘operate time’ OT.

• Between ‘4’ and ‘5’, the contact bounces and at the
end of this time, counters have values that will
become ‘operate bounces’ (ONB) and ‘bounce time’
(OBT) taken from the time of the last edge.

• At ‘8’ the allowed timing measurement duration ends,
producing a ‘timing complete’ signal TDONE.

• After the CR measure delay timer AMD expires, the
CR measurement (or contact voltage drop) starts,
completing its measurement at ‘10’ and setting the
CRDONE flag.

• At ‘13’, with timing complete (TDONE) and CR
complete (CR DONE), the contact can assert its
CFLAG, and the bus CFLAG line will assert when all
contacts are complete (typically at the same time).

• At ‘11’, the device card observes CFLAG and
responds by setting its DFLAG output.

• At ‘12’, the system card observes DFLAG and uses
this to de-assert T0 at E23, signalling the end of the
test phase and that the processor should now
intervene to collect data and prepare the system for
the release phase.

• At ‘14’ there is processor activity, to collect timing
data and to clear CFLAG, DFLAG and to configure
the system ready for the release phase. Typically, in a
life test situation, the load is required to remain ON if
a contact fails – so after pass / fail classification at
‘14’ the load can either be removed (the normal case)
or remain on with a halted system. (Note that it is also
possible that the same load is present and ON for the
entire life-test cycle – load modes permit this to be
selected in software).

• When the processor has configured the system
ready for the release phase, another T0 occurs and
the cycle repeats as shown for operate. There is no
difference between the release and operate timing,
only that CR (or contact voltage drop) is measured
across normally closed contacts instead of normally
open contacts.

CONCLUSION

The ‘Reflex’ relay test components developed by Applied
Relay Testing implement a flexible solution that permits a wide
range of test systems from simple single-seat operator test
stations up through automatic handler-based test through to
large life-test systems. The flexibility and ease of configuration
achieved with the described technology translates into a
good match between the device configuration and the test
system and achieves an excellent price-performance trade-off.

ACKNOWLEDGEMENT.

Applied Relay Testing Ltd thanks the following companies
for their support: Axicom AG (Switzerland), Teledyne Relays
(CA, USA), CII Technologies Inc (NC, USA) Pickering
Electronics (UK).

 13 of 13

REFERENCES.

[1] Specification CECC 16000 Section 5.28 (Vibration),
MIL-R-39016E section 4.8.10 etc. (Shock).

[2] B.J.Frost “A new generation of test equipment” Proc.
of the 45th relay conference, NARM, April 1997

[3] W.P.Taylor et al, “Batch Fabricated Electromagnetic
Microrelays” Proc. of the 45th relay conference,
NARM, April 1997

[4] B.J.Frost “Real-time analysis of the Contact Electrical
Environment During Switching” Proc. of the 47th relay
conference, NARM, April 1999

[5] Helmut F.Schlaak et al, “Silicon Microrelay – A Small
Signal Relay With Electrostatic Actuator” Proc. of the
45th relay conference, NARM, April 1997.

